use std::fs::File; use std::io::{BufWriter, Cursor, Seek, SeekFrom, Write}; use std::path::Path; use crate::CommonFormat; use super::fmt::WaveFmt; use super::fourcc::{ FourCC, WriteFourCC, AXML_SIG, BEXT_SIG, DATA_SIG, DS64_SIG, ELM1_SIG, FMT__SIG, IXML_SIG, JUNK_SIG, RF64_SIG, RIFF_SIG, WAVE_SIG, }; use super::{Error, Sample, I24}; //use super::common_format::CommonFormat; use super::bext::Bext; use super::chunks::WriteBWaveChunks; use byteorder::LittleEndian; use byteorder::WriteBytesExt; /// Write audio frames to a `WaveWriter`. /// /// pub struct AudioFrameWriter where W: Write + Seek, { inner: WaveChunkWriter, write_buffer: Vec, } impl AudioFrameWriter where W: Write + Seek, { fn new(inner: WaveChunkWriter) -> Self { AudioFrameWriter { inner, write_buffer: Vec::new(), } } /// Write interleaved samples in `buffer` /// /// The writer will convert from the buffer's sample type into the file's sample type. /// Note that no dithering will be applied during sample type conversion, /// if dithering is required then it will need to be applied manually. pub fn write_frames(&mut self, buffer: &[S]) -> Result<(), Error> where S: Sample, { let format = &self.inner.inner.format; let channel_count = format.channel_count as usize; if buffer.len() % channel_count != 0 { return Err(Error::InvalidBufferSize { buffer_size: buffer.len(), channel_count: format.channel_count, }); } let frame_count = buffer.len() / channel_count; let write_buffer_size = format.block_alignment as usize * frame_count; self.write_buffer.resize(write_buffer_size, 0); let mut write_cursor = Cursor::new(&mut self.write_buffer); let common_format = format.common_format(); let bits_per_sample = format.bits_per_sample; match (common_format, bits_per_sample) { (_, 8) => { for sample in buffer { write_cursor.write_u8(sample.to_sample())? } } (_, 16) => { for sample in buffer { write_cursor.write_i16::(sample.to_sample())? } } (_, 24) => { for sample in buffer { write_cursor.write_i24::(sample.to_sample::().inner())? } } (CommonFormat::IntegerPCM, 32) => { for sample in buffer { write_cursor.write_i32::(sample.to_sample())? } } (CommonFormat::IeeeFloatPCM, 32) => { for sample in buffer { write_cursor.write_f32::(sample.to_sample())? } } (_, _) => panic!( "Unrecognized format, bits per sample {}, channels {}, sample format {:?}", bits_per_sample, channel_count, common_format ), } self.inner.write_all(&self.write_buffer)?; Ok(()) } /// Finish writing audio frames and unwrap the inner `WaveWriter`. /// /// This method must be called when the client has finished writing audio /// data. This will finalize the audio data chunk. pub fn end(self) -> Result, Error> { self.inner.end() } } /// Write a wave data chunk. /// /// `WaveChunkWriter` implements `Write` and as bytes are written to it, /// /// ### Important! /// /// When you are done writing to a chunk you must call `end()` in order to /// finalize the chunk for storage. pub struct WaveChunkWriter where W: Write + Seek, { ident: FourCC, inner: WaveWriter, content_start_pos: u64, length: u64, } impl WaveChunkWriter where W: Write + Seek, { fn begin(mut inner: WaveWriter, ident: FourCC) -> Result { let length: u64 = 0; inner.inner.write_fourcc(ident)?; inner.inner.write_u32::(length as u32)?; inner.increment_form_length(8)?; let content_start_pos = inner.inner.seek(SeekFrom::End(0))?; Ok(WaveChunkWriter { ident, inner, content_start_pos, length, }) } fn end(mut self) -> Result, Error> { if self.length % 2 == 1 { self.inner.inner.seek(SeekFrom::End(0))?; self.inner.inner.write_u8(0)?; self.inner.increment_form_length(1)?; } Ok(self.inner) } fn increment_chunk_length(&mut self, amount: u64) -> Result<(), std::io::Error> { self.length += amount; if !self.inner.is_rf64 { self.inner .inner .seek(SeekFrom::Start(self.content_start_pos - 4))?; self.inner .inner .write_u32::(self.length as u32)?; } else if self.ident == DATA_SIG { let data_chunk_64bit_field_offset = 8 + 4 + 8 + 8; self.inner .inner .seek(SeekFrom::Start(self.content_start_pos - 4))?; self.inner.inner.write_u32::(0xFFFF_FFFF)?; // this only need to happen once, not every time we increment self.inner .inner .seek(SeekFrom::Start(data_chunk_64bit_field_offset))?; self.inner.inner.write_u64::(self.length)?; } else { todo!("FIXME RF64 wave writing is not yet supported for chunks other than `data`") } Ok(()) } } impl Write for WaveChunkWriter where W: Write + Seek, { fn write(&mut self, buffer: &[u8]) -> Result { self.inner.inner.seek(SeekFrom::End(0))?; let written = self.inner.inner.write(buffer)?; self.inner.increment_form_length(written as u64)?; self.increment_chunk_length(written as u64)?; Ok(written) } fn flush(&mut self) -> Result<(), std::io::Error> { self.inner.inner.flush() } } /// Wave, Broadcast-WAV and RF64/BW64 writer. /// /// A `WaveWriter` creates a new wave file at the given path (with `create()`) /// or into the given `Write`- and `Seek`-able inner writer. /// /// Audio is added to the wave file by starting the audio data chunk with /// `WaveWriter::audio_frame_writer()`. All of the functions that add chunks /// move the WaveWriter and return it to the host when complete. /// /// # Structure of New Wave Files /// /// `WaveWriter` will create a Wave file with two chunks automatically: a 96 /// byte `JUNK` chunk and a standard `fmt ` chunk, which has the extended /// length if the format your provided requires it. The first `JUNK` chunk is /// a reservation for a `ds64` record which will be written over it if /// the file needs to be upgraded to RF64 format. /// /// Chunks are added to the file in the order the client adds them. /// `audio_file_writer()` will add a `data` chunk for the audio data, and will /// also add an `elm1` filler chunk prior to the data chunk to ensure that the /// first byte of the data chunk's content is aligned with 0x4000. /// /// ``` /// use bwavfile::{WaveWriter,WaveFmt}; /// # use std::io::Cursor; /// /// // Write a three-sample wave file to a cursor /// let mut cursor = Cursor::new(vec![0u8;0]); /// let format = WaveFmt::new_pcm_mono(48000, 24); /// let w = WaveWriter::new(&mut cursor, format).unwrap(); /// /// let mut frame_writer = w.audio_frame_writer().unwrap(); /// /// frame_writer.write_frames(&[0i32]).unwrap(); /// frame_writer.write_frames(&[0i32]).unwrap(); /// frame_writer.write_frames(&[0i32]).unwrap(); /// frame_writer.end().unwrap(); /// ``` /// /// ## Resources /// /// ### Implementation of Wave Files /// - [Peter Kabal, McGill University](http://www-mmsp.ece.mcgill.ca/Documents/AudioFormats/WAVE/WAVE.html) /// - [Multimedia Programming Interface and Data Specifications 1.0](http://www-mmsp.ece.mcgill.ca/Documents/AudioFormats/WAVE/Docs/riffmci.pdf) /// (August 1991), IBM Corporation and Microsoft Corporation /// /// ### Implementation of Broadcast Wave Files /// - [EBU Tech 3285][ebu3285] (May 2011), "Specification of the Broadcast Wave Format (BWF)" /// - [Supplement 1](https://tech.ebu.ch/docs/tech/tech3285s1.pdf) (July 1997): MPEG Audio /// - [EBU Rec 68](https://tech.ebu.ch/docs/r/r068.pdf): Signal modulation and format constraints /// /// ### Implementation of 64-bit Wave Files /// - [ITU-R 2088][itu2088] (October 2019), "Long-form file format for the international exchange of audio programme materials with metadata" /// - Presently in force, adopted by the EBU in [EBU Tech 3306v2][ebu3306v2] (June 2018). /// - [EBU Tech 3306v1][ebu3306v1] (July 2009), "MBWF / RF64: An extended File Format for Audio" /// - No longer in force, however long-established. /// /// /// [ebu3285]: https://tech.ebu.ch/docs/tech/tech3285.pdf /// [ebu3306v1]: https://tech.ebu.ch/docs/tech/tech3306v1_1.pdf /// [ebu3306v2]: https://tech.ebu.ch/docs/tech/tech3306.pdf /// [itu2088]: https://www.itu.int/dms_pubrec/itu-r/rec/bs/R-REC-BS.2088-1-201910-I!!PDF-E.pdf /// [rfc3261]: https://tools.ietf.org/html/rfc2361 pub struct WaveWriter where W: Write + Seek, { inner: W, form_length: u64, /// True if file is RF64 pub is_rf64: bool, /// Format of the wave file. pub format: WaveFmt, } const DS64_RESERVATION_LENGTH: u32 = 96; impl WaveWriter> { /// Create a new Wave file at `path`. pub fn create>(path: P, format: WaveFmt) -> Result { let f = File::create(path)?; let b = BufWriter::new(f); Self::new(b, format) } } impl WaveWriter { /// Creare a new Wave file with unbuffered IO at `path` pub fn create_unbuffered>(path: P, format: WaveFmt) -> Result { let f = File::create(path)?; Self::new(f, format) } } impl WaveWriter where W: Write + Seek, { /// Wrap a writer in a Wave writer. /// /// The inner writer will immediately have a RIFF WAVE file header /// written to it along with the format descriptor (and possibly a `fact` /// chunk if appropriate). pub fn new(mut inner: W, format: WaveFmt) -> Result { inner.write_fourcc(RIFF_SIG)?; inner.write_u32::(0)?; inner.write_fourcc(WAVE_SIG)?; let mut retval = WaveWriter { inner, form_length: 0, is_rf64: false, format, }; retval.increment_form_length(4)?; // write ds64_reservation retval.write_junk(DS64_RESERVATION_LENGTH)?; let mut chunk = retval.chunk(FMT__SIG)?; chunk.write_wave_fmt(&format)?; let retval = chunk.end()?; Ok(retval) } fn write_chunk(&mut self, ident: FourCC, data: &[u8]) -> Result<(), Error> { self.inner.seek(SeekFrom::End(0))?; self.inner.write_fourcc(ident)?; assert!(data.len() < u32::MAX as usize); self.inner.write_u32::(data.len() as u32)?; self.inner.write_all(data)?; if data.len() % 2 == 0 { self.increment_form_length(8 + data.len() as u64)?; } else { self.inner.write_u8(0)?; self.increment_form_length(8 + data.len() as u64 + 1)?; } Ok(()) } /// Write Broadcast-Wave metadata to the file. /// /// This function will write the metadata chunk immediately to the end of /// the file; if you have already written and closed the audio data the /// bext chunk will be positioned after it. pub fn write_broadcast_metadata(&mut self, bext: &Bext) -> Result<(), Error> { //FIXME Implement re-writing let mut c = Cursor::new(vec![0u8; 0]); c.write_bext(bext)?; let buf = c.into_inner(); self.write_chunk(BEXT_SIG, &buf)?; Ok(()) } /// Write iXML metadata pub fn write_ixml(&mut self, ixml: &[u8]) -> Result<(), Error> { //FIXME Implement re-writing self.write_chunk(IXML_SIG, ixml) } /// Write axml/ADM metadata pub fn write_axml(&mut self, axml: &[u8]) -> Result<(), Error> { //FIXME Implement re-writing self.write_chunk(AXML_SIG, axml) } /// Write a `JUNK` filler chunk pub fn write_junk(&mut self, length: u32) -> Result<(), Error> { let filler = vec![0u8; length as usize]; self.write_chunk(JUNK_SIG, &filler) } /// Create an audio frame writer, which takes possession of the callee /// `WaveWriter`. /// pub fn audio_frame_writer(mut self) -> Result, Error> { // append elm1 chunk let framing = 0x4000; let lip = self.inner.seek(SeekFrom::End(0))?; let to_add = framing - (lip % framing) - 16; let mut chunk = self.chunk(ELM1_SIG)?; let buf = vec![0u8; to_add as usize]; chunk.write_all(&buf)?; let closed = chunk.end()?; let inner = closed.chunk(DATA_SIG)?; Ok(AudioFrameWriter::new(inner)) } /// Open a wave chunk writer here fn chunk(mut self, ident: FourCC) -> Result, Error> { self.inner.seek(SeekFrom::End(0))?; WaveChunkWriter::begin(self, ident) } /// Upgrade this file to RF64 fn promote_to_rf64(&mut self) -> Result<(), std::io::Error> { if !self.is_rf64 { self.inner.seek(SeekFrom::Start(0))?; self.inner.write_fourcc(RF64_SIG)?; self.inner.write_u32::(0xFFFF_FFFF)?; self.inner.seek(SeekFrom::Start(12))?; self.inner.write_fourcc(DS64_SIG)?; self.inner.seek(SeekFrom::Current(4))?; self.inner.write_u64::(self.form_length)?; self.is_rf64 = true; } Ok(()) } /// Add `amount` to the RIFF/RF64 form length fn increment_form_length(&mut self, amount: u64) -> Result<(), std::io::Error> { self.form_length += amount; if self.is_rf64 { self.inner.seek(SeekFrom::Start(8 + 4 + 8))?; self.inner.write_u64::(self.form_length)?; } else if self.form_length < u32::MAX as u64 { self.inner.seek(SeekFrom::Start(4))?; self.inner .write_u32::(self.form_length as u32)?; } else { self.promote_to_rf64()?; } Ok(()) } } #[test] fn test_new() { use super::fourcc::ReadFourCC; use byteorder::ReadBytesExt; use std::io::Cursor; let mut cursor = Cursor::new(vec![0u8; 0]); let format = WaveFmt::new_pcm_mono(4800, 24); WaveWriter::new(&mut cursor, format).unwrap(); cursor.seek(SeekFrom::Start(0)).unwrap(); assert_eq!(cursor.read_fourcc().unwrap(), RIFF_SIG); let form_size = cursor.read_u32::().unwrap(); assert_eq!(cursor.read_fourcc().unwrap(), WAVE_SIG); assert_eq!(cursor.read_fourcc().unwrap(), JUNK_SIG); let junk_size = cursor.read_u32::().unwrap(); assert_eq!(junk_size, 96); cursor.seek(SeekFrom::Current(junk_size as i64)).unwrap(); assert_eq!(cursor.read_fourcc().unwrap(), FMT__SIG); let fmt_size = cursor.read_u32::().unwrap(); assert_eq!(form_size, 4 + 8 + junk_size + 8 + fmt_size); } #[test] fn test_write_audio() { use super::fourcc::ReadFourCC; use byteorder::ReadBytesExt; use std::io::Cursor; let mut cursor = Cursor::new(vec![0u8; 0]); let format = WaveFmt::new_pcm_mono(48000, 24); let w = WaveWriter::new(&mut cursor, format).unwrap(); let mut frame_writer = w.audio_frame_writer().unwrap(); frame_writer.write_frames(&[0i32]).unwrap(); frame_writer.write_frames(&[0i32]).unwrap(); frame_writer.write_frames(&[0i32]).unwrap(); frame_writer.end().unwrap(); cursor.seek(SeekFrom::Start(0)).unwrap(); cursor.seek(SeekFrom::Start(0)).unwrap(); assert_eq!(cursor.read_fourcc().unwrap(), RIFF_SIG); let form_size = cursor.read_u32::().unwrap(); assert_eq!(cursor.read_fourcc().unwrap(), WAVE_SIG); //4 assert_eq!(cursor.read_fourcc().unwrap(), JUNK_SIG); //4 let junk_size = cursor.read_u32::().unwrap(); //4 cursor.seek(SeekFrom::Current(junk_size as i64)).unwrap(); assert_eq!(cursor.read_fourcc().unwrap(), FMT__SIG); //4 let fmt_size = cursor.read_u32::().unwrap(); //4 cursor.seek(SeekFrom::Current(fmt_size as i64)).unwrap(); assert_eq!(cursor.read_fourcc().unwrap(), ELM1_SIG); //4 let elm1_size = cursor.read_u32::().unwrap(); //4 cursor.seek(SeekFrom::Current(elm1_size as i64)).unwrap(); assert_eq!(cursor.read_fourcc().unwrap(), DATA_SIG); //4 let data_size = cursor.read_u32::().unwrap(); //4 assert_eq!(data_size, 9); let tell = cursor.seek(SeekFrom::Current(0)).unwrap(); assert!(tell % 0x4000 == 0); assert_eq!( form_size, 4 + 8 + junk_size + 8 + fmt_size + 8 + elm1_size + 8 + data_size + data_size % 2 ) } #[test] fn test_write_bext() { use std::io::Cursor; let mut cursor = Cursor::new(vec![0u8; 0]); let format = WaveFmt::new_pcm_mono(48000, 24); let mut w = WaveWriter::new(&mut cursor, format).unwrap(); let bext = Bext { description: String::from("Test description"), originator: String::from(""), originator_reference: String::from(""), origination_date: String::from("2020-01-01"), origination_time: String::from("12:34:56"), time_reference: 0, version: 0, umid: None, loudness_value: None, loudness_range: None, max_true_peak_level: None, max_momentary_loudness: None, max_short_term_loudness: None, coding_history: String::from(""), }; w.write_broadcast_metadata(&bext).unwrap(); let mut frame_writer = w.audio_frame_writer().unwrap(); frame_writer.write_frames(&[0i32]).unwrap(); frame_writer.write_frames(&[0i32]).unwrap(); frame_writer.write_frames(&[0i32]).unwrap(); frame_writer.end().unwrap(); } // NOTE! This test of RF64 writing takes several minutes to complete in debug builds #[test] fn test_create_rf64() { use super::fourcc::ReadFourCC; use byteorder::ReadBytesExt; let mut cursor = Cursor::new(vec![0u8; 0]); let format = WaveFmt::new_pcm_stereo(48000, 24); let w = WaveWriter::new(&mut cursor, format).unwrap(); let buflen = 16000 as u64; let buf = vec![0i32; buflen as usize]; let four_and_a_half_hours_of_frames = 48000 * 16_200; let mut af = w.audio_frame_writer().unwrap(); for _ in 0..(four_and_a_half_hours_of_frames * format.channel_count as u64 / buflen) { af.write_frames(&buf).unwrap(); } af.end().unwrap(); assert!( cursor.seek(SeekFrom::End(0)).unwrap() > 0xFFFF_FFFFu64, "internal test error, Created file is not long enough to be RF64" ); let expected_data_length = four_and_a_half_hours_of_frames * format.block_alignment as u64; cursor.seek(SeekFrom::Start(0)).unwrap(); assert_eq!(cursor.read_fourcc().unwrap(), RF64_SIG); assert_eq!(cursor.read_u32::().unwrap(), 0xFFFF_FFFF); assert_eq!(cursor.read_fourcc().unwrap(), WAVE_SIG); assert_eq!(cursor.read_fourcc().unwrap(), DS64_SIG); let ds64_size = cursor.read_u32::().unwrap(); let form_size = cursor.read_u64::().unwrap(); let data_size = cursor.read_u64::().unwrap(); assert_eq!(data_size, expected_data_length); cursor .seek(SeekFrom::Current(ds64_size as i64 - 16)) .unwrap(); assert_eq!(cursor.read_fourcc().unwrap(), FMT__SIG); let fmt_size = cursor.read_u32::().unwrap(); cursor .seek(SeekFrom::Current((fmt_size + fmt_size % 2) as i64)) .unwrap(); assert_eq!(cursor.read_fourcc().unwrap(), ELM1_SIG); let elm1_size = cursor.read_u32::().unwrap(); let data_start = cursor .seek(SeekFrom::Current((elm1_size + elm1_size % 2) as i64)) .unwrap(); assert!( (data_start + 8) % 0x4000 == 0, "data content start is not aligned, starts at {}", data_start + 8 ); assert_eq!(cursor.read_fourcc().unwrap(), DATA_SIG); assert_eq!(cursor.read_u32::().unwrap(), 0xFFFF_FFFF); cursor.seek(SeekFrom::Current(data_size as i64)).unwrap(); assert_eq!( 4 + 8 + ds64_size as u64 + 8 + data_size + 8 + fmt_size as u64 + 8 + elm1_size as u64, form_size ) }