Restructured

Hav removed suggestions for now, have added dataset
gathering and evaluation.
This commit is contained in:
Jamie Hardt
2025-08-26 16:47:35 -07:00
parent ec541458aa
commit 275d1341ab
5 changed files with 215 additions and 186 deletions

View File

@@ -1,3 +1,31 @@
# ucsinfer
Universal Category System inference.
## Running
```sh
python -m ucsinfer [command]
```
Pass `--help` to see a summary of subcommands and options.
The subcommands available at this time are `gather` and `evaluate`.
## Functions
* recommend
Infer a UCS category for a text description.
* gather
Scan files to capture existing text descriptions and UCS categories and save
as a dataset.
* finetune
Fine-tune an existing sentence embedding model with training data.
* evaluate
Use datasets to evauluate the performance of fine-tuning.

View File

@@ -11,7 +11,9 @@ dependencies = [
"sentence-transformers (>=5.0.0,<6.0.0)",
"numpy (>=2.3.2,<3.0.0)",
"tqdm (>=4.67.1,<5.0.0)",
"platformdirs (>=4.3.8,<5.0.0)"
"platformdirs (>=4.3.8,<5.0.0)",
"click (>=8.2.1,<9.0.0)",
"tabulate (>=0.9.0,<0.10.0)"
]

View File

@@ -1,199 +1,137 @@
import os
import json
import sys
import subprocess
import cmd
from typing import Optional, IO
from .inference import InferenceContext
import csv
from sentence_transformers import SentenceTransformer
import tqdm
import click
from tabulate import tabulate, SEPARATING_LINE
from .inference import InferenceContext, load_ucs
from .util import ffmpeg_description, parse_ucs
def description(path: str) -> Optional[str]:
result = subprocess.run(['ffprobe', '-show_format', '-of',
'json', path], capture_output=True)
@click.group()
@click.option('--verbose', flag_value='verbose', help='Verbose output')
def ucsinfer(verbose: bool):
pass
try:
result.check_returncode()
except:
return None
stream = json.loads(result.stdout)
fmt = stream.get("format", None)
if fmt:
tags = fmt.get("tags", None)
if tags:
return tags.get("comment", None)
def recommend_category(ctx: InferenceContext, path) -> tuple[str, list]:
@ucsinfer.command('recommend')
def recommend():
"""
Get a text description of the file at `path` and a list of UCS cat IDs
Infer a UCS category for a text description
"""
desc = description(path)
if desc is None:
desc = os.path.basename(path)
return desc, ctx.classify_text_ranked(desc)
pass
from shutil import get_terminal_size
@ucsinfer.command('gather')
@click.option('--outfile', type=click.File(mode='w', encoding='utf8'),
default='dataset.csv', show_default=True)
@click.argument('paths', nargs=-1)
def gather(paths, outfile):
"""
Scan files to build a training dataset at PATH
"""
types = ['.wav', '.flac']
table = csv.writer(outfile)
print(f"Loading category list...")
catid_list = [cat.catid for cat in load_ucs()]
class Commands(cmd.Cmd):
ctx: InferenceContext
scan_list = []
for path in paths:
print(f"Scanning directory {path}...", file=sys.stdout)
for dirpath, _, filenames in os.walk(path):
for filename in filenames:
root, ext = os.path.splitext(filename)
if ext in types and \
(ucs_components := parse_ucs(root, catid_list)) and \
not filename.startswith("._"):
scan_list.append((ucs_components.cat_id,
os.path.join(dirpath, filename)))
def __init__(self, completekey: str = "tab", stdin: IO[str] | None = None,
stdout: IO[str] | None = None) -> None:
super().__init__(completekey, stdin, stdout)
self.file_list = []
self.catlist: list = []
self.rec_list = []
self.history = []
print(f"Found {len(scan_list)} files to process.")
def preloop(self) -> None:
self.file_cursor = 0
self.update_prompt()
self.setup_for_file()
return super().preloop()
def default(self, line: str):
try:
sel = int(line)
self.onecmd(f"use {sel}")
except ValueError:
return super().default(line)
return super().default(line)
def precmd(self, line: str):
try:
rec = int(line)
if rec < len(self.rec_list):
pass
else:
pass
except ValueError:
pass
finally:
return super().precmd(line)
def postcmd(self, stop: bool, line: str) -> bool:
if not stop:
self.update_prompt()
self.setup_for_file()
return super().postcmd(stop, line)
def update_prompt(self):
self.prompt = f"(ucsinfer:{self.file_cursor}/{len(self.file_list)}) "
def setup_for_file(self):
if len(self.file_list) == 0:
print(" >> NO FILES!")
else:
file = self.file_list[self.file_cursor]
desc, recs = recommend_category(self.ctx, file)
self.onecmd('file')
print(f" >> {desc}")
self.print_recommendations(recs)
def print_recommendations(self, top_recs):
self.rec_list = []
cols, _ = get_terminal_size((80,20))
def print_one_rec(index, rec):
cat, subcat, exp = self.ctx.lookup_category(rec)
line = f" [{index:2}] {rec} - {cat} / {subcat} - {exp}"
if len(line) > cols - 3:
line = line[0:cols - 3] + "..."
print(line)
print("Suggested from description:")
for rec in top_recs:
print_one_rec(len(self.rec_list), rec)
self.rec_list.append(rec)
if len(self.history) > 0:
print("History:")
for rec in self.history:
print_one_rec(len(self.rec_list), rec)
self.rec_list.append(rec)
def do_about(self, line: str):
'Print information about recommendation NUMBER'
try:
picked = int(line)
if picked < len(self.rec_list):
cat, subcat, exp = \
self.ctx.lookup_category(self.rec_list[picked])
print(f" CatID: {self.rec_list[picked]}")
print(f" Category: {cat}")
print(f" SubCategory: {subcat}")
print(f" Explanation: {exp}")
except ValueError:
print(f" *** Value \"{line}\" not recognized")
for pair in tqdm.tqdm(scan_list, unit='files',file=sys.stderr):
if desc := ffmpeg_description(pair[1]):
table.writerow([pair[0], desc])
def do_use(self, line: str):
"""Apply recomendation NUMBER to the current file and advance to the
next one"""
try:
picked = int(line)
print(f" :: Using {self.rec_list[picked]}")
self.do_next("")
except ValueError:
print(" *** Value \"{line}\" not recognized")
def do_file(self, _):
'Print info about the current file'
print("---")
if self.file_cursor < len(self.file_list):
path = self.file_list[self.file_cursor]
f = os.path.basename(path)
print(f" > {f}")
else:
print( " > No file")
def do_ls(self, _):
'Print list of all files in the buffer'
for file in self.file_list[self.file_cursor:] + \
self.file_list[0:self.file_cursor]:
f = os.path.basename(file)
print(f" > {f}")
def do_next(self, _):
'go to next file'
self.file_cursor += 1
self.file_cursor = self.file_cursor % len(self.file_list)
self.setup_for_file()
def do_prev(self, _):
'go to previous file'
self.file_cursor -= 1
self.file_cursor = self.file_cursor % len(self.file_list)
self.setup_for_file()
def do_bye(self, _):
'exit the program'
print("Exiting...")
return True
@ucsinfer.command('finetune')
def finetune():
"""
Fine-tune a model with training data
"""
pass
def main():
@ucsinfer.command('evaluate')
@click.option('--offset', type=int, default=0)
@click.option('--limit', type=int, default=-1)
@click.argument('dataset', type=click.File('r', encoding='utf8'),
default='dataset.csv')
def evaluate(dataset, offset, limit):
"""
Use datasets to evauluate model performance
"""
model = SentenceTransformer("paraphrase-multilingual-mpnet-base-v2")
ctx = InferenceContext(model)
reader = csv.reader(dataset)
com = Commands()
com.file_list = sys.argv[1:]
com.ctx = InferenceContext(model=model)
results = []
for i, row in enumerate(tqdm.tqdm(reader)):
if i < offset:
continue
com.cmdloop()
if limit > 0 and i >= limit + offset:
break
cat_id, description = row
guesses = ctx.classify_text_ranked(description, limit=10)
if cat_id == guesses[0]:
results.append({'catid': cat_id, 'result': "TOP"})
elif cat_id in guesses[0:5]:
results.append({'catid': cat_id, 'result': "TOP_5"})
elif cat_id in guesses:
results.append({'catid': cat_id, 'result': "TOP_10"})
else:
results.append({'catid': cat_id, 'result': "MISS"})
total = len(results)
total_top = len([x for x in results if x['result'] == 'TOP'])
total_top_5 = len([x for x in results if x['result'] == 'TOP_5'])
total_top_10 = len([x for x in results if x['result'] == 'TOP_10'])
cats = set([x['catid'] for x in results])
total_cats = len(cats)
miss_counts = []
for cat in cats:
miss_counts.append((cat, len([x for x in results \
if x['catid'] == cat and x['result'] == 'MISS'])))
miss_counts = sorted(miss_counts, key=lambda x: x[1])
print(f" === RESULTS === ")
table = [
["Total records in sample:", f"{total}"],
["Top Result:", f"{total_top}",
f"{float(total_top)/float(total):.2%}"],
["Top 5 Result:", f"{total_top_5}",
f"{float(total_top_5)/float(total):.2%}"],
["Top 10 Result:", f"{total_top_10}",
f"{float(total_top_10)/float(total):.2%}"],
SEPARATING_LINE,
["UCS category count:", f"{len(ctx.catlist)}"],
["Total categories in sample:", f"{total_cats}",
f"{float(total_cats)/float(len(ctx.catlist)):.2%}"],
[f"Most missed category ({miss_counts[-1][0]}):",
f"{miss_counts[-1][1]}",
f"{float(miss_counts[-1][1])/float(total):.2%}"]
]
print(tabulate(table, headers=['','n','pct']))
if __name__ == '__main__':
@@ -202,4 +140,4 @@ if __name__ == '__main__':
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
main()
ucsinfer()

View File

@@ -32,6 +32,17 @@ class Ucs(NamedTuple):
subcategory=d['SubCategory'],
explanations=d['Explanations'], synonymns=d['Synonyms'])
def load_ucs() -> list[Ucs]:
FILE_ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
cats = []
ucs_defs = os.path.join(FILE_ROOT_DIR, 'ucs-community', 'json',
'en.json')
with open(ucs_defs, 'r') as f:
cats = json.load(f)
return [Ucs.from_dict(cat) for cat in cats]
class InferenceContext:
"""
Maintains caches and resources for UCS category inference.
@@ -44,15 +55,7 @@ class InferenceContext:
@cached_property
def catlist(self) -> list[Ucs]:
FILE_ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
cats = []
ucs_defs = os.path.join(FILE_ROOT_DIR, 'ucs-community', 'json',
'en.json')
with open(ucs_defs, 'r') as f:
cats = json.load(f)
return [Ucs.from_dict(cat) for cat in cats]
return load_ucs()
@cached_property
def embeddings(self) -> list[dict]:

58
ucsinfer/util.py Normal file
View File

@@ -0,0 +1,58 @@
import subprocess
import json
from typing import NamedTuple, Optional
from re import match
from .inference import Ucs
def ffmpeg_description(path: str) -> Optional[str]:
result = subprocess.run(['ffprobe', '-show_format', '-of',
'json', path], capture_output=True)
try:
result.check_returncode()
except:
return None
stream = json.loads(result.stdout)
fmt = stream.get("format", None)
if fmt:
tags = fmt.get("tags", None)
if tags:
return tags.get("comment", None)
class UcsNameComponents(NamedTuple):
cat_id: str
user_cat: str | None
vendor_cat: str | None
fx_name: str
creator: str | None
source: str | None
user_data: str | None
def parse_ucs(basename: str, catid_list: list[str]) -> Optional[UcsNameComponents]:
regexp1 = r"^(?P<CatID>[A-z]+)(-(?P<UserCat>[^_]+))?_((?P<VendorCat>[^-]+)-)?(?P<FXName>[^_]+)"
regexp2 = r"(_(?P<CreatorID>[^_]+)(_(?P<SourceID>[^_]+)(_(?P<UserData>[^.]+))?)?)?"
regexp = regexp1 + regexp2
matches = match(regexp, basename)
if matches is None:
return None
if matches.group('CatID') not in catid_list:
return None
return UcsNameComponents(cat_id=matches.group('CatID'),
user_cat=matches.group('UserCat'),
vendor_cat=matches.group('VendorCat'),
fx_name=matches.group('FXName'),
creator=matches.group('CreatorID'),
source=matches.group('SourceID'),
user_data=matches.group('UserData'))