Files
ucsinfer/ucsinfer/gather.py

65 lines
1.9 KiB
Python

from datasets import Dataset, Features, Value, ClassLabel, DatasetInfo
from datasets.dataset_dict import DatasetDict
from typing import Iterator
from tabulate import tabulate
def print_dataset_stats(dataset: DatasetDict, catlist: list[str]):
data_table = []
data_table.append([["Total records in combined dataset:", len(dataset)]])
data_table.append([["Total records in `train`:", len(dataset['train'])]])
tab = tabulate(data_table)
print(tab)
# https://www.sbert.net/docs/sentence_transformer/loss_overview.html
def build_sentence_class_dataset(
records: Iterator[tuple[str, str]],
catlist: list[str]) -> DatasetDict:
"""
Create a new dataset for `records` which contains (sentence, class) pairs.
The dataset is split into train and test slices.
:param records: a generator for records that generates pairs of
(sentence, catid)
:returns: A dataset with two columns: (sentence, hash(catid))
"""
labels = ClassLabel(names=catlist)
features = Features({'sentence': Value('string'),
'class': labels})
info = DatasetInfo(
description=f"(sentence, UCS CatID) pairs gathered by the "
"ucsinfer tool on {}", features= features)
items: list[dict] = []
for obj in records:
items += [{'sentence': obj[0], 'class': obj[1]}]
whole = Dataset.from_list(items, features=features, info=info)
split_set = whole.train_test_split(0.2)
test_eval_set = split_set['test'].train_test_split(0.5)
return DatasetDict({
'train': split_set['train'],
'test': test_eval_set['train'],
'eval': test_eval_set['test']
})
# def build_sentence_anchor_dataset() -> Dataset:
# """
# Create a new dataset for `records` which contains (sentence, anchor) pairs.
# """
# pass