Files
bwavfile/src/wavewriter.rs
Ian Hobson bd09ed207a Re-use the write buffer between calls to write_frames
This resulted in a ~10% speedup in test runs of the deinter example.
2023-05-19 10:57:39 +02:00

622 lines
20 KiB
Rust

use std::fs::File;
use std::io::{BufWriter, Cursor, Seek, SeekFrom, Write};
use std::path::Path;
use crate::CommonFormat;
use super::fmt::WaveFmt;
use super::fourcc::{
FourCC, WriteFourCC, AXML_SIG, BEXT_SIG, DATA_SIG, DS64_SIG, ELM1_SIG, FMT__SIG, IXML_SIG,
JUNK_SIG, RF64_SIG, RIFF_SIG, WAVE_SIG,
};
use super::{Error, Sample, I24};
//use super::common_format::CommonFormat;
use super::bext::Bext;
use super::chunks::WriteBWaveChunks;
use byteorder::LittleEndian;
use byteorder::WriteBytesExt;
/// Write audio frames to a `WaveWriter`.
///
///
pub struct AudioFrameWriter<W>
where
W: Write + Seek,
{
inner: WaveChunkWriter<W>,
write_buffer: Vec<u8>,
}
impl<W> AudioFrameWriter<W>
where
W: Write + Seek,
{
fn new(inner: WaveChunkWriter<W>) -> Self {
AudioFrameWriter {
inner,
write_buffer: Vec::new(),
}
}
/// Write interleaved samples in `buffer`
///
/// The writer will convert from the buffer's sample type into the file's sample type.
/// Note that no dithering will be applied during sample type conversion,
/// if dithering is required then it will need to be applied manually.
pub fn write_frames<S>(&mut self, buffer: &[S]) -> Result<(), Error>
where
S: Sample,
{
let format = &self.inner.inner.format;
let channel_count = format.channel_count as usize;
if buffer.len() % channel_count != 0 {
return Err(Error::InvalidBufferSize {
buffer_size: buffer.len(),
channel_count: format.channel_count,
});
}
let frame_count = buffer.len() / channel_count;
let write_buffer_size = format.block_alignment as usize * frame_count;
self.write_buffer.resize(write_buffer_size, 0);
let mut write_cursor = Cursor::new(&mut self.write_buffer);
let common_format = format.common_format();
let bits_per_sample = format.bits_per_sample;
match (common_format, bits_per_sample) {
(_, 8) => {
for sample in buffer {
write_cursor.write_u8(sample.to_sample())?
}
}
(_, 16) => {
for sample in buffer {
write_cursor.write_i16::<LittleEndian>(sample.to_sample())?
}
}
(_, 24) => {
for sample in buffer {
write_cursor.write_i24::<LittleEndian>(sample.to_sample::<I24>().inner())?
}
}
(CommonFormat::IntegerPCM, 32) => {
for sample in buffer {
write_cursor.write_i32::<LittleEndian>(sample.to_sample())?
}
}
(CommonFormat::IeeeFloatPCM, 32) => {
for sample in buffer {
write_cursor.write_f32::<LittleEndian>(sample.to_sample())?
}
}
(_, _) => panic!(
"Unrecognized format, bits per sample {}, channels {}, sample format {:?}",
bits_per_sample, channel_count, common_format
),
}
self.inner.write_all(&self.write_buffer)?;
Ok(())
}
/// Finish writing audio frames and unwrap the inner `WaveWriter`.
///
/// This method must be called when the client has finished writing audio
/// data. This will finalize the audio data chunk.
pub fn end(self) -> Result<WaveWriter<W>, Error> {
self.inner.end()
}
}
/// Write a wave data chunk.
///
/// `WaveChunkWriter` implements `Write` and as bytes are written to it,
///
/// ### Important!
///
/// When you are done writing to a chunk you must call `end()` in order to
/// finalize the chunk for storage.
pub struct WaveChunkWriter<W>
where
W: Write + Seek,
{
ident: FourCC,
inner: WaveWriter<W>,
content_start_pos: u64,
length: u64,
}
impl<W> WaveChunkWriter<W>
where
W: Write + Seek,
{
fn begin(mut inner: WaveWriter<W>, ident: FourCC) -> Result<Self, Error> {
let length: u64 = 0;
inner.inner.write_fourcc(ident)?;
inner.inner.write_u32::<LittleEndian>(length as u32)?;
inner.increment_form_length(8)?;
let content_start_pos = inner.inner.seek(SeekFrom::End(0))?;
Ok(WaveChunkWriter {
ident,
inner,
content_start_pos,
length,
})
}
fn end(mut self) -> Result<WaveWriter<W>, Error> {
if self.length % 2 == 1 {
self.inner.inner.seek(SeekFrom::End(0))?;
self.inner.inner.write_u8(0)?;
self.inner.increment_form_length(1)?;
}
Ok(self.inner)
}
fn increment_chunk_length(&mut self, amount: u64) -> Result<(), std::io::Error> {
self.length += amount;
if !self.inner.is_rf64 {
self.inner
.inner
.seek(SeekFrom::Start(self.content_start_pos - 4))?;
self.inner
.inner
.write_u32::<LittleEndian>(self.length as u32)?;
} else if self.ident == DATA_SIG {
let data_chunk_64bit_field_offset = 8 + 4 + 8 + 8;
self.inner
.inner
.seek(SeekFrom::Start(self.content_start_pos - 4))?;
self.inner.inner.write_u32::<LittleEndian>(0xFFFF_FFFF)?;
// this only need to happen once, not every time we increment
self.inner
.inner
.seek(SeekFrom::Start(data_chunk_64bit_field_offset))?;
self.inner.inner.write_u64::<LittleEndian>(self.length)?;
} else {
todo!("FIXME RF64 wave writing is not yet supported for chunks other than `data`")
}
Ok(())
}
}
impl<W> Write for WaveChunkWriter<W>
where
W: Write + Seek,
{
fn write(&mut self, buffer: &[u8]) -> Result<usize, std::io::Error> {
self.inner.inner.seek(SeekFrom::End(0))?;
let written = self.inner.inner.write(buffer)?;
self.inner.increment_form_length(written as u64)?;
self.increment_chunk_length(written as u64)?;
Ok(written)
}
fn flush(&mut self) -> Result<(), std::io::Error> {
self.inner.inner.flush()
}
}
/// Wave, Broadcast-WAV and RF64/BW64 writer.
///
/// A `WaveWriter` creates a new wave file at the given path (with `create()`)
/// or into the given `Write`- and `Seek`-able inner writer.
///
/// Audio is added to the wave file by starting the audio data chunk with
/// `WaveWriter::audio_frame_writer()`. All of the functions that add chunks
/// move the WaveWriter and return it to the host when complete.
///
/// # Structure of New Wave Files
///
/// `WaveWriter` will create a Wave file with two chunks automatically: a 96
/// byte `JUNK` chunk and a standard `fmt ` chunk, which has the extended
/// length if the format your provided requires it. The first `JUNK` chunk is
/// a reservation for a `ds64` record which will be written over it if
/// the file needs to be upgraded to RF64 format.
///
/// Chunks are added to the file in the order the client adds them.
/// `audio_file_writer()` will add a `data` chunk for the audio data, and will
/// also add an `elm1` filler chunk prior to the data chunk to ensure that the
/// first byte of the data chunk's content is aligned with 0x4000.
///
/// ```
/// use bwavfile::{WaveWriter,WaveFmt};
/// # use std::io::Cursor;
///
/// // Write a three-sample wave file to a cursor
/// let mut cursor = Cursor::new(vec![0u8;0]);
/// let format = WaveFmt::new_pcm_mono(48000, 24);
/// let w = WaveWriter::new(&mut cursor, format).unwrap();
///
/// let mut frame_writer = w.audio_frame_writer().unwrap();
///
/// frame_writer.write_frames(&[0i32]).unwrap();
/// frame_writer.write_frames(&[0i32]).unwrap();
/// frame_writer.write_frames(&[0i32]).unwrap();
/// frame_writer.end().unwrap();
/// ```
///
/// ## Resources
///
/// ### Implementation of Wave Files
/// - [Peter Kabal, McGill University](http://www-mmsp.ece.mcgill.ca/Documents/AudioFormats/WAVE/WAVE.html)
/// - [Multimedia Programming Interface and Data Specifications 1.0](http://www-mmsp.ece.mcgill.ca/Documents/AudioFormats/WAVE/Docs/riffmci.pdf)
/// (August 1991), IBM Corporation and Microsoft Corporation
///
/// ### Implementation of Broadcast Wave Files
/// - [EBU Tech 3285][ebu3285] (May 2011), "Specification of the Broadcast Wave Format (BWF)"
/// - [Supplement 1](https://tech.ebu.ch/docs/tech/tech3285s1.pdf) (July 1997): MPEG Audio
/// - [EBU Rec 68](https://tech.ebu.ch/docs/r/r068.pdf): Signal modulation and format constraints
///
/// ### Implementation of 64-bit Wave Files
/// - [ITU-R 2088][itu2088] (October 2019), "Long-form file format for the international exchange of audio programme materials with metadata"
/// - Presently in force, adopted by the EBU in [EBU Tech 3306v2][ebu3306v2] (June 2018).
/// - [EBU Tech 3306v1][ebu3306v1] (July 2009), "MBWF / RF64: An extended File Format for Audio"
/// - No longer in force, however long-established.
///
///
/// [ebu3285]: https://tech.ebu.ch/docs/tech/tech3285.pdf
/// [ebu3306v1]: https://tech.ebu.ch/docs/tech/tech3306v1_1.pdf
/// [ebu3306v2]: https://tech.ebu.ch/docs/tech/tech3306.pdf
/// [itu2088]: https://www.itu.int/dms_pubrec/itu-r/rec/bs/R-REC-BS.2088-1-201910-I!!PDF-E.pdf
/// [rfc3261]: https://tools.ietf.org/html/rfc2361
pub struct WaveWriter<W>
where
W: Write + Seek,
{
inner: W,
form_length: u64,
/// True if file is RF64
pub is_rf64: bool,
/// Format of the wave file.
pub format: WaveFmt,
}
const DS64_RESERVATION_LENGTH: u32 = 96;
impl WaveWriter<BufWriter<File>> {
/// Create a new Wave file at `path`.
pub fn create<P: AsRef<Path>>(path: P, format: WaveFmt) -> Result<Self, Error> {
let f = File::create(path)?;
let b = BufWriter::new(f);
Self::new(b, format)
}
}
impl WaveWriter<File> {
/// Creare a new Wave file with unbuffered IO at `path`
pub fn create_unbuffered<P: AsRef<Path>>(path: P, format: WaveFmt) -> Result<Self, Error> {
let f = File::create(path)?;
Self::new(f, format)
}
}
impl<W> WaveWriter<W>
where
W: Write + Seek,
{
/// Wrap a writer in a Wave writer.
///
/// The inner writer will immediately have a RIFF WAVE file header
/// written to it along with the format descriptor (and possibly a `fact`
/// chunk if appropriate).
pub fn new(mut inner: W, format: WaveFmt) -> Result<Self, Error> {
inner.write_fourcc(RIFF_SIG)?;
inner.write_u32::<LittleEndian>(0)?;
inner.write_fourcc(WAVE_SIG)?;
let mut retval = WaveWriter {
inner,
form_length: 0,
is_rf64: false,
format,
};
retval.increment_form_length(4)?;
// write ds64_reservation
retval.write_junk(DS64_RESERVATION_LENGTH)?;
let mut chunk = retval.chunk(FMT__SIG)?;
chunk.write_wave_fmt(&format)?;
let retval = chunk.end()?;
Ok(retval)
}
fn write_chunk(&mut self, ident: FourCC, data: &[u8]) -> Result<(), Error> {
self.inner.seek(SeekFrom::End(0))?;
self.inner.write_fourcc(ident)?;
assert!(data.len() < u32::MAX as usize);
self.inner.write_u32::<LittleEndian>(data.len() as u32)?;
self.inner.write_all(data)?;
if data.len() % 2 == 0 {
self.increment_form_length(8 + data.len() as u64)?;
} else {
self.inner.write_u8(0)?;
self.increment_form_length(8 + data.len() as u64 + 1)?;
}
Ok(())
}
/// Write Broadcast-Wave metadata to the file.
///
/// This function will write the metadata chunk immediately to the end of
/// the file; if you have already written and closed the audio data the
/// bext chunk will be positioned after it.
pub fn write_broadcast_metadata(&mut self, bext: &Bext) -> Result<(), Error> {
//FIXME Implement re-writing
let mut c = Cursor::new(vec![0u8; 0]);
c.write_bext(bext)?;
let buf = c.into_inner();
self.write_chunk(BEXT_SIG, &buf)?;
Ok(())
}
/// Write iXML metadata
pub fn write_ixml(&mut self, ixml: &[u8]) -> Result<(), Error> {
//FIXME Implement re-writing
self.write_chunk(IXML_SIG, ixml)
}
/// Write axml/ADM metadata
pub fn write_axml(&mut self, axml: &[u8]) -> Result<(), Error> {
//FIXME Implement re-writing
self.write_chunk(AXML_SIG, axml)
}
/// Write a `JUNK` filler chunk
pub fn write_junk(&mut self, length: u32) -> Result<(), Error> {
let filler = vec![0u8; length as usize];
self.write_chunk(JUNK_SIG, &filler)
}
/// Create an audio frame writer, which takes possession of the callee
/// `WaveWriter`.
///
pub fn audio_frame_writer(mut self) -> Result<AudioFrameWriter<W>, Error> {
// append elm1 chunk
let framing = 0x4000;
let lip = self.inner.seek(SeekFrom::End(0))?;
let to_add = framing - (lip % framing) - 16;
let mut chunk = self.chunk(ELM1_SIG)?;
let buf = vec![0u8; to_add as usize];
chunk.write_all(&buf)?;
let closed = chunk.end()?;
let inner = closed.chunk(DATA_SIG)?;
Ok(AudioFrameWriter::new(inner))
}
/// Open a wave chunk writer here
fn chunk(mut self, ident: FourCC) -> Result<WaveChunkWriter<W>, Error> {
self.inner.seek(SeekFrom::End(0))?;
WaveChunkWriter::begin(self, ident)
}
/// Upgrade this file to RF64
fn promote_to_rf64(&mut self) -> Result<(), std::io::Error> {
if !self.is_rf64 {
self.inner.seek(SeekFrom::Start(0))?;
self.inner.write_fourcc(RF64_SIG)?;
self.inner.write_u32::<LittleEndian>(0xFFFF_FFFF)?;
self.inner.seek(SeekFrom::Start(12))?;
self.inner.write_fourcc(DS64_SIG)?;
self.inner.seek(SeekFrom::Current(4))?;
self.inner.write_u64::<LittleEndian>(self.form_length)?;
self.is_rf64 = true;
}
Ok(())
}
/// Add `amount` to the RIFF/RF64 form length
fn increment_form_length(&mut self, amount: u64) -> Result<(), std::io::Error> {
self.form_length += amount;
if self.is_rf64 {
self.inner.seek(SeekFrom::Start(8 + 4 + 8))?;
self.inner.write_u64::<LittleEndian>(self.form_length)?;
} else if self.form_length < u32::MAX as u64 {
self.inner.seek(SeekFrom::Start(4))?;
self.inner
.write_u32::<LittleEndian>(self.form_length as u32)?;
} else {
self.promote_to_rf64()?;
}
Ok(())
}
}
#[test]
fn test_new() {
use super::fourcc::ReadFourCC;
use byteorder::ReadBytesExt;
use std::io::Cursor;
let mut cursor = Cursor::new(vec![0u8; 0]);
let format = WaveFmt::new_pcm_mono(4800, 24);
WaveWriter::new(&mut cursor, format).unwrap();
cursor.seek(SeekFrom::Start(0)).unwrap();
assert_eq!(cursor.read_fourcc().unwrap(), RIFF_SIG);
let form_size = cursor.read_u32::<LittleEndian>().unwrap();
assert_eq!(cursor.read_fourcc().unwrap(), WAVE_SIG);
assert_eq!(cursor.read_fourcc().unwrap(), JUNK_SIG);
let junk_size = cursor.read_u32::<LittleEndian>().unwrap();
assert_eq!(junk_size, 96);
cursor.seek(SeekFrom::Current(junk_size as i64)).unwrap();
assert_eq!(cursor.read_fourcc().unwrap(), FMT__SIG);
let fmt_size = cursor.read_u32::<LittleEndian>().unwrap();
assert_eq!(form_size, 4 + 8 + junk_size + 8 + fmt_size);
}
#[test]
fn test_write_audio() {
use super::fourcc::ReadFourCC;
use byteorder::ReadBytesExt;
use std::io::Cursor;
let mut cursor = Cursor::new(vec![0u8; 0]);
let format = WaveFmt::new_pcm_mono(48000, 24);
let w = WaveWriter::new(&mut cursor, format).unwrap();
let mut frame_writer = w.audio_frame_writer().unwrap();
frame_writer.write_frames(&[0i32]).unwrap();
frame_writer.write_frames(&[0i32]).unwrap();
frame_writer.write_frames(&[0i32]).unwrap();
frame_writer.end().unwrap();
cursor.seek(SeekFrom::Start(0)).unwrap();
cursor.seek(SeekFrom::Start(0)).unwrap();
assert_eq!(cursor.read_fourcc().unwrap(), RIFF_SIG);
let form_size = cursor.read_u32::<LittleEndian>().unwrap();
assert_eq!(cursor.read_fourcc().unwrap(), WAVE_SIG); //4
assert_eq!(cursor.read_fourcc().unwrap(), JUNK_SIG); //4
let junk_size = cursor.read_u32::<LittleEndian>().unwrap(); //4
cursor.seek(SeekFrom::Current(junk_size as i64)).unwrap();
assert_eq!(cursor.read_fourcc().unwrap(), FMT__SIG); //4
let fmt_size = cursor.read_u32::<LittleEndian>().unwrap(); //4
cursor.seek(SeekFrom::Current(fmt_size as i64)).unwrap();
assert_eq!(cursor.read_fourcc().unwrap(), ELM1_SIG); //4
let elm1_size = cursor.read_u32::<LittleEndian>().unwrap(); //4
cursor.seek(SeekFrom::Current(elm1_size as i64)).unwrap();
assert_eq!(cursor.read_fourcc().unwrap(), DATA_SIG); //4
let data_size = cursor.read_u32::<LittleEndian>().unwrap(); //4
assert_eq!(data_size, 9);
let tell = cursor.seek(SeekFrom::Current(0)).unwrap();
assert!(tell % 0x4000 == 0);
assert_eq!(
form_size,
4 + 8 + junk_size + 8 + fmt_size + 8 + elm1_size + 8 + data_size + data_size % 2
)
}
#[test]
fn test_write_bext() {
use std::io::Cursor;
let mut cursor = Cursor::new(vec![0u8; 0]);
let format = WaveFmt::new_pcm_mono(48000, 24);
let mut w = WaveWriter::new(&mut cursor, format).unwrap();
let bext = Bext {
description: String::from("Test description"),
originator: String::from(""),
originator_reference: String::from(""),
origination_date: String::from("2020-01-01"),
origination_time: String::from("12:34:56"),
time_reference: 0,
version: 0,
umid: None,
loudness_value: None,
loudness_range: None,
max_true_peak_level: None,
max_momentary_loudness: None,
max_short_term_loudness: None,
coding_history: String::from(""),
};
w.write_broadcast_metadata(&bext).unwrap();
let mut frame_writer = w.audio_frame_writer().unwrap();
frame_writer.write_frames(&[0i32]).unwrap();
frame_writer.write_frames(&[0i32]).unwrap();
frame_writer.write_frames(&[0i32]).unwrap();
frame_writer.end().unwrap();
}
// NOTE! This test of RF64 writing takes several minutes to complete in debug builds
#[test]
fn test_create_rf64() {
use super::fourcc::ReadFourCC;
use byteorder::ReadBytesExt;
let mut cursor = Cursor::new(vec![0u8; 0]);
let format = WaveFmt::new_pcm_stereo(48000, 24);
let w = WaveWriter::new(&mut cursor, format).unwrap();
let buflen = 16000 as u64;
let buf = vec![0i32; buflen as usize];
let four_and_a_half_hours_of_frames = 48000 * 16_200;
let mut af = w.audio_frame_writer().unwrap();
for _ in 0..(four_and_a_half_hours_of_frames * format.channel_count as u64 / buflen) {
af.write_frames(&buf).unwrap();
}
af.end().unwrap();
assert!(
cursor.seek(SeekFrom::End(0)).unwrap() > 0xFFFF_FFFFu64,
"internal test error, Created file is not long enough to be RF64"
);
let expected_data_length = four_and_a_half_hours_of_frames * format.block_alignment as u64;
cursor.seek(SeekFrom::Start(0)).unwrap();
assert_eq!(cursor.read_fourcc().unwrap(), RF64_SIG);
assert_eq!(cursor.read_u32::<LittleEndian>().unwrap(), 0xFFFF_FFFF);
assert_eq!(cursor.read_fourcc().unwrap(), WAVE_SIG);
assert_eq!(cursor.read_fourcc().unwrap(), DS64_SIG);
let ds64_size = cursor.read_u32::<LittleEndian>().unwrap();
let form_size = cursor.read_u64::<LittleEndian>().unwrap();
let data_size = cursor.read_u64::<LittleEndian>().unwrap();
assert_eq!(data_size, expected_data_length);
cursor
.seek(SeekFrom::Current(ds64_size as i64 - 16))
.unwrap();
assert_eq!(cursor.read_fourcc().unwrap(), FMT__SIG);
let fmt_size = cursor.read_u32::<LittleEndian>().unwrap();
cursor
.seek(SeekFrom::Current((fmt_size + fmt_size % 2) as i64))
.unwrap();
assert_eq!(cursor.read_fourcc().unwrap(), ELM1_SIG);
let elm1_size = cursor.read_u32::<LittleEndian>().unwrap();
let data_start = cursor
.seek(SeekFrom::Current((elm1_size + elm1_size % 2) as i64))
.unwrap();
assert!(
(data_start + 8) % 0x4000 == 0,
"data content start is not aligned, starts at {}",
data_start + 8
);
assert_eq!(cursor.read_fourcc().unwrap(), DATA_SIG);
assert_eq!(cursor.read_u32::<LittleEndian>().unwrap(), 0xFFFF_FFFF);
cursor.seek(SeekFrom::Current(data_size as i64)).unwrap();
assert_eq!(
4 + 8 + ds64_size as u64 + 8 + data_size + 8 + fmt_size as u64 + 8 + elm1_size as u64,
form_size
)
}