Split training sets from gather
This commit is contained in:
3
TODO.md
3
TODO.md
@@ -17,8 +17,9 @@
|
||||
|
||||
- Print more information about the dataset coverage of UCS
|
||||
- Allow skipping model testing for this
|
||||
|
||||
- Print raw output
|
||||
- Maybe load everything into a sqlite for slicker reporting
|
||||
<!-- - Maybe load everything into a sqlite for slicker reporting -->
|
||||
|
||||
|
||||
## Utility
|
||||
|
@@ -163,10 +163,12 @@ def gather(ctx, paths, out, ucs_data):
|
||||
logger.info('Creating dataset for UCS categories instead of from PATH')
|
||||
paths = []
|
||||
|
||||
walker_p = tqdm.tqdm(total=None, unit='dir', desc="Walking filesystem...")
|
||||
for path in paths:
|
||||
for dirpath, _, filenames in os.walk(path):
|
||||
logger.info(f"Walking directory {dirpath}")
|
||||
for filename in filenames:
|
||||
walker_p.update()
|
||||
root, ext = os.path.splitext(filename)
|
||||
if ext not in types or filename.startswith("._"):
|
||||
continue
|
||||
@@ -175,6 +177,7 @@ def gather(ctx, paths, out, ucs_data):
|
||||
p = os.path.join(dirpath, filename)
|
||||
logger.info(f"Adding path to scan list {p}")
|
||||
scan_list.append((ucs_components.cat_id, p))
|
||||
walker_p.close()
|
||||
|
||||
logger.info(f"Found {len(scan_list)} files to process.")
|
||||
|
||||
@@ -184,7 +187,7 @@ def gather(ctx, paths, out, ucs_data):
|
||||
try:
|
||||
desc = ffmpeg_description(pair[1])
|
||||
except CalledProcessError as e:
|
||||
logger.error(f"ffprobe returned error {e.returncode}: " \
|
||||
logger.error(f"ffprobe returned error (){e.returncode}): " \
|
||||
+ e.stderr)
|
||||
continue
|
||||
|
||||
|
32
ucsinfer/evaluate.py
Normal file
32
ucsinfer/evaluate.py
Normal file
@@ -0,0 +1,32 @@
|
||||
|
||||
|
||||
from sentence_transformers import SentenceTransformer
|
||||
from sentence_transformers.evaluation import BinaryClassificationEvaluator
|
||||
from datasets import load_dataset_from_disk, DatasetDict
|
||||
|
||||
|
||||
def evaluate_model(model: SentenceTransformer, dataset):
|
||||
|
||||
# eval_dataset =
|
||||
|
||||
# Initialize the evaluator
|
||||
binary_acc_evaluator = BinaryClassificationEvaluator(
|
||||
sentences1=eval_dataset["sentence1"],
|
||||
sentences2=eval_dataset["sentence2"],
|
||||
labels=eval_dataset["label"],
|
||||
name="quora_duplicates_dev",
|
||||
)
|
||||
results = binary_acc_evaluator(model)
|
||||
'''
|
||||
Binary Accuracy Evaluation of the model on the quora_duplicates_dev dataset:
|
||||
Accuracy with Cosine-Similarity: 81.60 (Threshold: 0.8352)
|
||||
F1 with Cosine-Similarity: 75.27 (Threshold: 0.7715)
|
||||
Precision with Cosine-Similarity: 65.81
|
||||
Recall with Cosine-Similarity: 87.89
|
||||
Average Precision with Cosine-Similarity: 76.03
|
||||
Matthews Correlation with Cosine-Similarity: 62.48
|
||||
'''
|
||||
print(binary_acc_evaluator.primary_metric)
|
||||
# => "quora_duplicates_dev_cosine_ap"
|
||||
print(results[binary_acc_evaluator.primary_metric])
|
||||
# => 0.760277070888393
|
@@ -1,13 +1,16 @@
|
||||
from datasets import Dataset, Features, Value, ClassLabel, DatasetInfo
|
||||
from datasets.dataset_dict import DatasetDict
|
||||
|
||||
from typing import Generator, Any
|
||||
|
||||
# https://www.sbert.net/docs/sentence_transformer/loss_overview.html
|
||||
|
||||
def build_sentence_class_dataset(
|
||||
records: Generator[tuple[str, str], Any, None], catlist: list[str]) -> Dataset:
|
||||
records: Generator[tuple[str, str], Any, None],
|
||||
catlist: list[str]) -> DatasetDict:
|
||||
"""
|
||||
Create a new dataset for `records` which contains (sentence, class) pairs.
|
||||
The dataset is split into train and test slices.
|
||||
|
||||
:param records: a generator for records that generates pairs of
|
||||
(sentence, catid)
|
||||
@@ -16,9 +19,12 @@ def build_sentence_class_dataset(
|
||||
|
||||
labels = ClassLabel(names=catlist)
|
||||
|
||||
features = Features({'sentence': Value('string'),
|
||||
'class': labels})
|
||||
|
||||
info = DatasetInfo(
|
||||
description=f"(sentence, UCS CatID) pairs gathered by the "
|
||||
"ucsinfer tool on {}")
|
||||
"ucsinfer tool on {}", features= features)
|
||||
|
||||
|
||||
items: list[dict] = []
|
||||
@@ -26,9 +32,16 @@ def build_sentence_class_dataset(
|
||||
items += [{'sentence': obj[0], 'class': obj[1]}]
|
||||
|
||||
|
||||
return Dataset.from_list(items, features=Features({'sentence': Value('string'),
|
||||
'class': labels}),
|
||||
info=info)
|
||||
whole = Dataset.from_list(items, features=features, info=info)
|
||||
|
||||
split_set = whole.train_test_split(0.2)
|
||||
test_eval_set = split_set['test'].train_test_split(0.5)
|
||||
|
||||
return DatasetDict({
|
||||
'train': split_set['train'],
|
||||
'test': test_eval_set['train'],
|
||||
'eval': test_eval_set['test']
|
||||
})
|
||||
|
||||
|
||||
# def build_sentence_anchor_dataset() -> Dataset:
|
||||
|
Reference in New Issue
Block a user