CSV import implementation

This commit is contained in:
2025-10-14 10:26:57 -07:00
parent 2fa5e4575d
commit 5fc57cf7c8

View File

@@ -1,6 +1,9 @@
import os
import logging
from itertools import chain
import csv
from typing import Generator
import click
@@ -49,8 +52,8 @@ def ucsinfer(ctx, verbose, no_model_cache, model, complete_ucs):
stream_handler.setLevel(logging.WARNING)
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
logger.info("Setting TOKENIZERS_PARALLELISM environment variable to `false"
" explicitly")
logger.info("Setting TOKENIZERS_PARALLELISM environment variable to "
"`false` explicitly")
ctx.ensure_object(dict)
ctx.obj['model_cache'] = not no_model_cache
@@ -132,7 +135,30 @@ def recommend(ctx, text, paths, interactive, skip_ucs):
print(f"Renaming {path} \n to {new_path}")
os.rename(path, new_path)
break
def csv_to_data(paths, description_key, filename_key, catid_list) -> Generator[tuple[str, str], None, None]:
"""
Accepts a list of paths and returns an iterator of (sentence, class)
tuples.
"""
for path in paths:
with open(path, 'r') as f:
records = csv.DictReader(f)
assert filename_key in records.fieldnames, \
(f"Filename key `{filename_key}` not present in file "
"{path}")
assert description_key in records.fieldnames, \
(f"Description key `{description_key}` not present in "
"file {path}")
for record in records:
ucs_comps = parse_ucs(record[filename_key], catid_list)
if ucs_comps:
yield (record[description_key], ucs_comps.cat_id)
@ucsinfer.command('csv')
@click.option('--filename-col', default="FileName",
help="Heading or index of the column containing filenames",
@@ -143,7 +169,7 @@ def recommend(ctx, text, paths, interactive, skip_ucs):
@click.option('--out', default='dataset/', show_default=True)
@click.argument('paths', nargs=-1)
@click.pass_context
def csv(ctx, paths, out, filename_col, description_col):
def import_csv(ctx, paths: list[str], out, filename_col, description_col):
"""
Scan training data from CSV files
@@ -152,16 +178,29 @@ def csv(ctx, paths, out, filename_col, description_col):
file system it builds a dataset from descriptions and UCS filenames in
columns of a CSV file.
"""
pass
logger.debug("CSV mode")
logger.debug(f"Loading category list...")
ucs = load_ucs(full_ucs=ctx.obj['complete_ucs'])
catid_list = [cat.catid for cat in ucs]
logger.info("Building dataset from csv...")
dataset = build_sentence_class_dataset(
chain(csv_to_data(paths, description_col, filename_col, catid_list),
ucs_definitions_generator(ucs)),catid_list)
logger.info(f"Saving dataset to disk at {out}")
print_dataset_stats(dataset, catid_list)
dataset.save_to_disk(out)
@ucsinfer.command('gather')
@click.option('--out', default='dataset/', show_default=True)
# @click.option('--ucs-data', flag_value=True, help="Create a dataset based "
# "on the UCS category explanations and synonymns (PATHS will "
# "be ignored.)")
@click.argument('paths', nargs=-1)
@click.pass_context
def gather(ctx, paths, out, ucs_data):
def gather(ctx, paths, out):
"""
Scan training data from audio files
@@ -184,20 +223,16 @@ def gather(ctx, paths, out, ucs_data):
scan_list: list[tuple[str,str]] = []
catid_list = [cat.catid for cat in ucs]
if ucs_data:
logger.info('Creating dataset for UCS categories instead of from PATH')
paths = []
for path in paths:
scan_list += walk_path(path, catid_list)
logger.info(f"Found {len(scan_list)} files to process.")
logger.info("Building dataset...")
logger.info("Building dataset files...")
dataset = build_sentence_class_dataset(
chain(scan_metadata(scan_list, catid_list),
ucs_definitions_generator(ucs)),
chain(scan_metadata(scan_list, catid_list),
ucs_definitions_generator(ucs)),
catid_list)
logger.info(f"Saving dataset to disk at {out}")