Compare commits
5 Commits
2e726c1b88
...
master
| Author | SHA1 | Date | |
|---|---|---|---|
| 3ca921ad02 | |||
| 5fc57cf7c8 | |||
| 2fa5e4575d | |||
| e5698fec7b | |||
| c75365b856 |
5
TODO.md
5
TODO.md
@@ -18,9 +18,8 @@
|
||||
- Use (anchor, positive) pairs to train a new model
|
||||
- Use (sentence) + class labels to train a new model
|
||||
- Implement BatchAllTripletLoss
|
||||
- Implement a two-phase training regime
|
||||
1. Train with anchored definitions then...
|
||||
2. Train with class labels
|
||||
- Train with anchored definitions and/or...
|
||||
- Train with class labels
|
||||
|
||||
|
||||
## Evaluate
|
||||
|
||||
@@ -1,13 +1,11 @@
|
||||
import os
|
||||
# import csv
|
||||
import logging
|
||||
from itertools import chain
|
||||
|
||||
import tqdm
|
||||
import click
|
||||
# from tabulate import tabulate, SEPARATING_LINE
|
||||
|
||||
from .inference import InferenceContext, load_ucs
|
||||
from .import_csv import csv_to_data
|
||||
from .gather import (build_sentence_class_dataset, print_dataset_stats,
|
||||
ucs_definitions_generator, scan_metadata, walk_path)
|
||||
from .recommend import print_recommendation
|
||||
@@ -22,6 +20,7 @@ formatter = logging.Formatter(
|
||||
stream_handler.setFormatter(formatter)
|
||||
logger.addHandler(stream_handler)
|
||||
|
||||
|
||||
@click.group(epilog="For more information see "
|
||||
"<https://git.squad51.us/jamie/ucsinfer>")
|
||||
@click.option('--verbose', '-v', flag_value=True, help='Verbose output')
|
||||
@@ -52,8 +51,8 @@ def ucsinfer(ctx, verbose, no_model_cache, model, complete_ucs):
|
||||
stream_handler.setLevel(logging.WARNING)
|
||||
|
||||
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
|
||||
logger.info("Setting TOKENIZERS_PARALLELISM environment variable to `false"
|
||||
" explicitly")
|
||||
logger.info("Setting TOKENIZERS_PARALLELISM environment variable to "
|
||||
"`false` explicitly")
|
||||
|
||||
ctx.ensure_object(dict)
|
||||
ctx.obj['model_cache'] = not no_model_cache
|
||||
@@ -121,7 +120,8 @@ def recommend(ctx, text, paths, interactive, skip_ucs):
|
||||
text = os.path.basename(path)
|
||||
|
||||
while True:
|
||||
retval = print_recommendation(path, text, inference_ctx, interactive)
|
||||
retval = print_recommendation(
|
||||
path, text, inference_ctx, interactive)
|
||||
if not retval:
|
||||
break
|
||||
if retval[0] is False:
|
||||
@@ -137,16 +137,50 @@ def recommend(ctx, text, paths, interactive, skip_ucs):
|
||||
break
|
||||
|
||||
|
||||
@ucsinfer.command('gather')
|
||||
@ucsinfer.command('csv')
|
||||
@click.option('--filename-col', default="FileName",
|
||||
help="Heading or index of the column containing filenames",
|
||||
show_default=True)
|
||||
@click.option('--description-col', default="TrackDescription",
|
||||
help="Heading or index of the column containing descriptions",
|
||||
show_default=True)
|
||||
@click.option('--out', default='dataset/', show_default=True)
|
||||
# @click.option('--ucs-data', flag_value=True, help="Create a dataset based "
|
||||
# "on the UCS category explanations and synonymns (PATHS will "
|
||||
# "be ignored.)")
|
||||
@click.argument('paths', nargs=-1)
|
||||
@click.pass_context
|
||||
def gather(ctx, paths, out, ucs_data):
|
||||
def import_csv(ctx, paths: list[str], out, filename_col, description_col):
|
||||
"""
|
||||
Scan files to build a training dataset
|
||||
Scan training data from CSV files
|
||||
|
||||
`csv` is used to build a training dataset for finetuning the selected
|
||||
model, as like the `gather` command, except instead of scanning the
|
||||
file system it builds a dataset from descriptions and UCS filenames in
|
||||
columns of a CSV file.
|
||||
"""
|
||||
logger.debug("CSV mode")
|
||||
|
||||
logger.debug(f"Loading category list...")
|
||||
ucs = load_ucs(full_ucs=ctx.obj['complete_ucs'])
|
||||
|
||||
catid_list = [cat.catid for cat in ucs]
|
||||
|
||||
logger.info("Building dataset from csv...")
|
||||
|
||||
dataset = build_sentence_class_dataset(
|
||||
chain(csv_to_data(paths, description_col, filename_col, catid_list),
|
||||
ucs_definitions_generator(ucs)), catid_list)
|
||||
|
||||
logger.info(f"Saving dataset to disk at {out}")
|
||||
print_dataset_stats(dataset, catid_list)
|
||||
dataset.save_to_disk(out)
|
||||
|
||||
|
||||
@ucsinfer.command('gather')
|
||||
@click.option('--out', default='dataset/', show_default=True)
|
||||
@click.argument('paths', nargs=-1)
|
||||
@click.pass_context
|
||||
def gather(ctx, paths, out):
|
||||
"""
|
||||
Scan training data from audio files
|
||||
|
||||
`gather` is used to build a training dataset for finetuning the selected
|
||||
model. Description sentences and UCS categories are collected from '.wav'
|
||||
@@ -167,16 +201,12 @@ def gather(ctx, paths, out, ucs_data):
|
||||
scan_list: list[tuple[str, str]] = []
|
||||
catid_list = [cat.catid for cat in ucs]
|
||||
|
||||
if ucs_data:
|
||||
logger.info('Creating dataset for UCS categories instead of from PATH')
|
||||
paths = []
|
||||
|
||||
for path in paths:
|
||||
scan_list += walk_path(path, catid_list)
|
||||
|
||||
logger.info(f"Found {len(scan_list)} files to process.")
|
||||
|
||||
logger.info("Building dataset...")
|
||||
logger.info("Building dataset files...")
|
||||
|
||||
dataset = build_sentence_class_dataset(
|
||||
chain(scan_metadata(scan_list, catid_list),
|
||||
@@ -187,6 +217,7 @@ def gather(ctx, paths, out, ucs_data):
|
||||
print_dataset_stats(dataset, catid_list)
|
||||
dataset.save_to_disk(out)
|
||||
|
||||
|
||||
@ucsinfer.command('qualify')
|
||||
def qualify():
|
||||
"""
|
||||
@@ -208,7 +239,6 @@ def finetune(ctx):
|
||||
logger.debug("FINETUNE mode")
|
||||
|
||||
|
||||
|
||||
@ucsinfer.command('evaluate')
|
||||
@click.argument('dataset', default='dataset/')
|
||||
@click.pass_context
|
||||
@@ -220,6 +250,5 @@ def evaluate(ctx, dataset, offset, limit):
|
||||
logger.warning("Model evaluation is not currently implemented")
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
ucsinfer(obj={})
|
||||
|
||||
28
ucsinfer/import_csv.py
Normal file
28
ucsinfer/import_csv.py
Normal file
@@ -0,0 +1,28 @@
|
||||
import csv
|
||||
|
||||
from typing import Generator
|
||||
|
||||
from .util import parse_ucs
|
||||
|
||||
|
||||
def csv_to_data(paths, description_key, filename_key, catid_list) -> Generator[tuple[str, str], None, None]:
|
||||
"""
|
||||
Accepts a list of paths and returns an iterator of (sentence, class)
|
||||
tuples.
|
||||
"""
|
||||
for path in paths:
|
||||
with open(path, 'r') as f:
|
||||
records = csv.DictReader(f)
|
||||
|
||||
assert filename_key in records.fieldnames, \
|
||||
(f"Filename key `{filename_key}` not present in file "
|
||||
"{path}")
|
||||
|
||||
assert description_key in records.fieldnames, \
|
||||
(f"Description key `{description_key}` not present in "
|
||||
"file {path}")
|
||||
|
||||
for record in records:
|
||||
ucs_comps = parse_ucs(record[filename_key], catid_list)
|
||||
if ucs_comps:
|
||||
yield (record[description_key], ucs_comps.cat_id)
|
||||
Reference in New Issue
Block a user